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Abstract—Using Peer-to-Peer (P2P) overlay networks have
become a progressively popular approach for streaming live
media over the Internet due to their deployment simplicity and
scalability. In this paper, we propose a new hybrid push-pull
live P2P video streaming protocol called PPM that combines
the benefits of pull and push mechanisms for video delivery.
Our main goal is to minimize the network end-to-end delay
compared to the pure mesh networks. The PPM consists of two
phases; Pull-based and Push-based. In the first phase, a new
peer joins to the network based on a pull-based mechanism.
In the second phase, a parent node based on the peers’
overlay hop count in the mesh topology is selected. Then, a
dynamic tree is constructed to push the high priority video
frames to the children of the selected parent. Using OMNET++
as the simulation platform, we show that beside significant
improvement on the end-to-end delay, PPM achieves lower visual
distortion compared to the pure mesh networks. Moreover, the
simulation results confirm superiority of the PPM in comparison
with the popular mesh-based P2P streaming systems.

Index Terms – Peer-to-Peer live streaming, push-pull protocol,
mesh-based networks.

I. INTRODUCTION

By the advent of accessible Internet connection, the de-
mands for online video are continuously increasing. TV broad-
casting suppliers deploy new ways to provide the customers
with streaming video over the Internet. Up to now, several
video distribution models such as IP multicasting and Ap-
plication Layer Multicasting (ALM) have been proposed [1].
Among the ALM models, Peer-to-Peer (P2P) streaming sys-
tems have attracted more researches in the field of design and
implementation because of their scalability and deployment
simplicity. P2P streaming systems are applied for both video
On-demand that is considered as stored video, e.g., Bittorent
[2] and Live video streaming, e.g., PPLive [3]. Regardless
of their applications, generally, P2P streaming systems are
classified into three categories; 1) Tree-based [1] [4] [5] that
are known as structured overlay architecture in which the video
is pushed from the origin server (root node) to its children.
These systems are a well-organized structures and have simple
implementation mechanism. 2) Mesh-based [6] [7] where
peers are not limited to a static topology and they pull the
content from their neighbors by sending request messages
to them. The main advantage of the mesh-based systems is

that they are very robust to peer churn. And 3) the Hybrid
architectures [8] [9] that deploy both tree and mesh topologies
in their delivery system. It means that, a push-pull approach is
deployed on the hybrid system for delivering the video content.
The main advantage of designing hybrid structure is to exploit
the benefits of both tree and mesh structures and achieve the
quality of service standards.

In the hybrid structures, a separate control topology is
needed for both tree and mesh topologies that leads to high
control overhead [9] [10]. In addition, using tree and mesh
topologies in the hybrid structures have some disadvantages.
Using tree, is vulnerable to nodes dynamic and churn; when-
ever a new node either wants to join or leave the streaming
session, the whole tree should be reconstructed. Additionally,
tree-based systems suffer from single point of failure, band-
width utilization problems. Moreover, they need a controlling
mechanism or algorithm to control the tree topology. Even
though, the mesh-based systems mitigate the bandwidth uti-
lization problem of tree systems, but they suffer from high
controlling overhead that is due to exchange of controlling
messages such as request/response and buffermap messages.
Furthermore, different data packets may pass over different
routes, as a result, users may suffer from video playback
quality degradation [7] ranging from low video bit rate and
long startup delays. Hybrid systems although, improve the
resiliency of the network, their construction and maintenance
are complex [8].

In this paper, we propose a new protocol with a hybrid
push-pull approach, called Push-Pull Mesh (PPM), which is
deployed on a pure mesh-based network. We have used single
layer video coding and introduced a new priority-based deliv-
ery scheduling mechanism. This new scheduling mechanism
is exploited to emulate the tree behavior. In this mechanism an
overlay hop count-based parent selection method is developed
to select a parent among nodes’ neighbors; then a dynamic tree
within the pure mesh topology will be constructed. Afterward,
the video packets with the higher priority are pushed through
that tree.

Consequently, we organize our push-pull protocol in a pure
mesh-based network that does not need any extra controlling
mechanism and its construction is not complex. Likewise,
because the single layer video is used in our video delivery



system, there is no need of any knowledge of video in the
scheduling section. We show that by omitting some of ex-
changed messages between peers, the lower end-to-end delay
and also lower overhead can be achieved. In addition, the
push mechanism introduced in the PPM, causes significant
decrease in video distortion, while it delivers the video packets
to the destination, before their playback time is expired.
The simulation results show that we could achieve 15% and
77% decreases in the end-to-end delay and video distortion,
respectively. The results also indicate that we could achieve
our design goals which are handling single point of failure
that occurs in tree-based systems and also lower controlling
overhead.

The rest of the paper is organized as follows. In section
II, we discuss some newly introduced hybrid protocols as
related work to our proposed protocol. The details of the
proposed protocol are explained in section III. In section IV,
the simulation results are discussed. Finally, the conclusions
and future plans are presented in section V.

II. RELATED WORK

Generally, push-pull video streaming protocols can be
achieved through two approaches. The first approach, called
mesh-tree, is to construct a hybrid topology by combining tree
and mesh structures [11] [8] [10]. The second approach, called
mesh-based, is to alter the mesh topology and deploy a push-
pull scheme [12] [13]. In the following, we survey the state
of the art push-pull P2P video streaming systems in these two
categories.

GridMedia [11] is an unstructured Mesh-Tree P2P protocol
for live media streaming employing a push-pull mechanism.
In this protocol, each node works in pure pull mode in the first
time when connecting to the network. After that, based on the
traffic from each neighbor, the node will subscribe the pushing
packets (which include packets that should be pushed) from its
neighbors at the end of each time interval.The proposed push-
pull mechanism in GridMedia reduces the latency and inherits
good features such as simplicity and robustness of pure pull
method. As the GridMedia uses multiple description coding,
it causes complex construction of mesh-tree architecture.

In the mTreebone [8], the main idea is to identify some
stable nodes in mesh-based. Then video is pushed through the
tree that is constructed by the root node and these stable nodes.
The mesh topology then is used to help nodes to obtain the
missing video blocks in the network. mTreebone uses Multiple
Description Coding (MDC) for its video delivery system. The
main drawback of the mTreebone is that it is not resilience
enough in presence of flash crowded situation.

In [12] an Interleave protocol has been proposed that deploy
the advantages of the push-pull mechanism on an unstructured
Mesh-based network. This protocol interleaves push and pull
mechanisms in different time intervals, and a peer is only in
one of push or pull state. When the peer is in the push state
it will select a neighbor and pushes the video chunks with the
highest sequence number. When the state of the peer is pull,

if it has available bandwidth and its attempts are less than the
pull attempts threshold, then it will send a pull message to
one of its neighbors.

As mentioned above, the Interleave protocol has cyclic be-
haviors that causes non-concurrent push and pull mechanisms.
In addition, the protocol works in the situation that there is
no need to have any information about available chunks of
neighbors. Therefore, most of the network bandwidth will be
overloaded due to exchanging useless push and pull mes-
sages. Moreover, the Interleave protocol has an impractical
assumption which is all nodes have equal and unlimited
upload/download bandwidth.

In the New CoolStreaming [13], as a Mesh-based protocol,
the video is divided into N sub-streams without any coding
techniques. These sub-streams contain the video block and
all nodes can request each sub-stream separately. The push
mechanism in the New CoolStreaming works in the way that
the information about sub-streams and their contents (video
blocks) is carried on the nodes buffermap that is exchanged
between them periodically. Each node based on the missing
video block, requests that block within a single pull request.
Then, the provider will push the sub-stream that contains that
video block to the node. Overhead reduction and time saving
during block transmission from the sender to the receiver are
the most significant advantages of the New CoolStreaming
protocol. But the sub-streaming that used in this protocol
increases its construction complexity.

A hierarchical push-pull and Multi-Tree based scheme is
proposed in [10] that contains two topologies: control topology
and multi-source multicast tree. The multi-source multicast
tree is built above the control topology. The control topology is
used to control and manage membership, to group closer peers
together, and to simplify the selection of multi-source data
paths. The multi-source multicast tree is considered to decrease
the impression of node churn and to resolve the problems,
like potential bandwidth bottlenecks.In this protocol, peers are
arranged into different clusters in a hierarchical structure. The
number of nodes in each cluster is limited by [k, 3k-1], where
k is a universal constant predefined in this protocol. After
join procedure, the newly joined peer can easily place [k, 3k-
1] peers as its strong links and another [k, 3k-1] peers as its
weak links. The newly joined peer then selects N parents from
both of its strong and weak links for push-type delivery. If the
packet is lost in the push-type path, the packet will be pulled
from other links. The multi-source multicast tree makes the
system adaptive to node churn and packet loss. A separate
control topology leads to high overhead in this protocol.
Consequently, the efficiency of this system will decrease. In
addition deploying multi-tree in delivery topology makes the
topology construction complex.

Regarding the discussion above, although some of protocols
are mesh-based protocols, they deploy MDC or sub-streaming
coding that require a complex usage and implementation
compared to single layer coding. On the other hand, those who
used single layer video coding, they are constructed based on
multi-tree topology that has reconstruction complexity prob-



lem [8]. Except the Interleave protocol that has the problem of
asynchronous push and pull mechanism. But our protocol, the
PPM, is deployed on the pure mesh-based network. It uses
the single layer video coding, so, it has simple usage and
deployment and also it deploys push and pull mechanisms
concurrently.

III. PROPOSED METHOD: THE PPM

Our proposed protocol focuses on a pure mesh topology and
uses a single layer video coding in its video delivery system.
We introduce a new priority-based video delivery scheduling
mechanism for the scheduling method in which all peers
request the video packets based on the frame types. Then,
an overlay hop count-based parent selection method is used to
construct a dynamic tree within the pure mesh topology. After
that, the most important video frames that have higher priority
rather than the other frames in a Group of Picture (GoP), will
be pushed through the constructed dynamic tree.

Algorithm 1: PPM’s Scheduling Algorithm

Input:

isChild: The state when peer is child
isParent: The state when peer is parent
playingDeadline: Playing time deadline for a frame
missingFrame: The missing frame in the node’s buffer
F : A frame type variable
pushingFrame: I or P frames that must be pushed
childList[i]: An array consists of a parent’s children

Scheduling:

if isChild then //Pull-based phase
if missingFrame == I or P then

if playingDeadline ≤ 2×RTT then
F ← missingFrame;

Pull(F );
end

else
Wait-for-Push();

end
end
if isParent then //Push-based phase

for every childList[i] do
Push (pushingFrames);

end
end

Generally, the PPM scheduling is developed into two phases
(Alg.1): the pull-based and the push-based phases. Each node,
in the startup, works under the pull-based phase. The parent se-
lection and push method are invoked in the push-based phase.
The following sub-sections explain the protocol mechanism in
detail.

Fig. 1. Application level join process in the overlay mesh network

A. Pull-based phase

When a peer joins the network, firstly, it contacts a node so
called Tracker that has global information about the existing
peers in the network. It requests a random number between
3 to 5 [14](by sending a Neighbor Request message) that
indicates it requires some neighbors. The tracker sends back a
Neighbor Response message in which the addresses of some
peers corresponding to the requested number are resided. The
tracker returns the list of neighbors that are close to each other
from the aspect of their entered time to the network.

After retrieving the neighbors’ address the newly joined
peer contacts each of them and sends a Join REQ message
to inform them that it wants to make a connection. On the
opposite side, if the peer has a free position for the nodes
request it sends a Join RES message to the peer; otherwise, a
Join DENY message will be sent back. When the newly joined
peer receives the accept message, it replies with a Join ACK
message to confirm the neighboring connection between itself
and the opposite peer. (Fig.1)

If a peer received a Join DENY message from a peer, it
will contact with the Tracker and request another neighbor and
obtains a new neighbor’s address and the join process will be
recalled again. After establishing the connection between two
nodes, they start to exchange their Buffermaps.

As Fig.2 shows, the buffermap is a map that shows the avail-
able video frames in the node’s buffer. When a video frame
is available in a cell of the nodes buffer, its corresponding
bit in the buffermap’s cell is 1, otherwise, the value of the
buffermap’s cell is 0.

When the newly joined peer receives the first buffermap
message from its neighbors, since we deploy the live stream-
ing, it should shift its playing window and synch with its
neighbors. After that, it randomly selects one of its neighbors
and requests the video packets. If the requested frame does
not arrive within a time less than the Round Trip Time (RTT)
seconds, the peer will repeat its request by randomly choosing



Fig. 2. Buffermap concept

another neighbor.

B. Push-based phase

To achieve our goal that is deploying the push mechanism
on a pure pull-based mesh topology, we have introduced a new
priority-based scheduling mechanism in our protocol.

We have used the typical MPEG compression standard and
introduced the GoP structure. In a GoP, there exists 1 I frame,
3 P frames, and 8 B frames. P frames are called inter-coded,
and they can be predicted from their previous P or I frames. B
frames are bidirectional and predicted from previous and future
P or I frames [15] (Fig.3). These frame types information only
used for deploying the push mechanism.

By considering these principles, if the base frame of a
GoP (I frame) is lost, then all the other received frames of
corresponding GoP cannot be decoded. This condition is also
true for the first P frame of each GoP.

Regarding the characteristics of MPEG standard, we assign
a priority to each frame in the GoP. I frame has the highest
priority in a GoP. After I frame, the first P frame has the
priority in the second level. We call this frame, P1 frame.
Based on the principle of each GoP, if a base P1 frame is
lost, the following correctly received frames will be lost. We
exploit this priority to make our push mechanism possible to
work correctly in the network.

To push the most important frames on the mesh network,
we have to choose a proper node to act as a parent and push
those frames to its children. On the other hand, when a push
procedure is going to appear, it is very important to prevent
from data redundancy. To address this problem, we introduce
a parent selection function in which the best potential node
from the aspect of shortest distance from the server will be
selected. We select based on minimum overlay hop count far
from the video server. The minimum overlay hop count helps
us to make sure that a node that can provide us with lower
end-to-end delay is selected and it can deliver the network
packets faster. The overlay hop count equals to the number of
peers that a network packet passes as a path until it reaches

the destination peer. After selecting the appropriate node, the
child sends the Push Req message to the target parent.

On the other hand, when a node receives a Push Req
message, if it has free position to accept a child, it replies
with a Push Accept message; otherwise, it replies with a
Push Deny message to inform the child that it has no available
position for the sender of the request.

We have defined a State parameter for each node in the
PPM. Typically, when a node joins at the Initialize phase, its
state will be set to REGULAR. When it is accepted to be
child, its state will be changed to CHILD. If a node receives
a Push Accept message, it will finalize the parent selection
by changing the state of the sender of this message from
REGULAR to PARENT to show that its parent is the peer that
has answered with Push Accept message. At last, if a node
encountered with a Push Deny message, it changes the state
of the opposite peer from REGULAR to PUSH DENIED;
therefore, it should recall the parent selection method again
to select the parent from its remaining REGULAR neighbors.

Although, we do not focus on resource allocation in our
design, we used a simple upload bandwidth allocation tech-
nique for each parent to select child nodes. In this technique,
each parent node, dedicates a minimum amount of upload
bandwidth to each of its children. Therefore, based on parent’s
uplink, we divide it into multiples of 256 kbps (due the video
bit rate of 256 kbps). For example, if the node’s uplink is
1 Mbps, there exists 4 × 256 kbps slices. Then we reserve
two slice (about 50% of upload bandwidth) for neighbors in
pull phase that might request the missing chunk (such as B,
P or I frames). And the remaining two slices (remaining 50%
of upload bandwidth) will be dedicated to child nodes for
push phase. Hence the node can select at most two nodes as
children. It is obvious that this technique is not an optimal
resource allocation solution, but we insured that the parent
could serve the child nodes.

1) Parent selection procedure: We have considered approx-
imation of nodes overlay hop count in the network to select an
appropriate parent. Each node calculates and puts its overlay
hop count in its buffermap and exchanges that between its
neighbors periodically. We exchange the overlay hop count
periodically because we want to have the chance of parent
selection at any time of streaming session. For example, in
presence of churn or parent failure, a child node can easily
make its best decision and choose another appropriate parent.
Therefore, when a peer wants to select the parent, it compares

Fig. 3. Typical GoP structure in MPEG standard



its neighbors hop counts and chooses the neighbor with the
minimum hop count among the neighbors. Then it sends its
Push Req message and the procedure mentioned in subsection
B (the push-based phase) will be done.

The parent selection method has some key points in the
PPM. Firstly, We emphasize that, by parent selection based
on minimum overlay hop count, the nearest node to the origin
server will be selected. The nearest neighbor node to the server
has this advantage that the node can deliver the video frames
faster due to its distance from the server. Secondly, it should
be noticed that, when a peer starts playing the video, the parent
selection method would be called. Considering this point for
evoking the parent selection method guarantees this fact that,
the node has the sufficient number of neighbors to select a
parent from them. Nodes in the PPM start their playback if
they get all their neighbors. In addition, playing moment is an
appropriate time to push the available packets to the children
nodes. It means that there are sufficient amounts of video
packets in the nodes buffer for pushing them to the children.
Thirdly, using parent selection method leads to construction of
a dynamic tree above the mesh topology without maintaining
additional topology and data beside the base mesh network.
And finally, as only one parent is selected for each child,
so it does not receive similar pushing packets from different
neighbors.

2) Overlay hop count calculation: We have added an
additional field to each nodes video frame as Hop. The value
of the hop in the server is set to 0. Since, a frame travels
through the network and is obtained by every node, this value
increases by 1. Therefore, each node receives different frames
from various paths. To calculate the overlay hop count in each
node, it maintains the latest 20 recently received frames hop.
We estimate the overlay hop count equal to the average of
these twenty hops. The value of the overlay hop count is
continuously updated by receiving new frames from neighbors.
Hence, whenever a peer wants to select its parent, it can easily
choose the updated information.

3) Push mechanism: After parent selection process, when-
ever a parent node receives a frame, if it is P1 or I frame, it
will push that frame to its children.

On the other hand, in order to prevent data redundancy, if
a peer has a parent, it does not ask the frames whether their
type is P1 or I. In the situation that the playing deadline for
P1 frame or I is going to pass, the child requests that frame to
prevent frame loss. Further explain, we have considered that
if the frame didn’t receive within 2 × RTT seconds before
its playing time, the peer will request that from its neighbors.
In the case of parent failure or churn, its child nodes will
recall the parent selection method again and choose another
appropriate parent.

IV. SIMULATION AND RESULTS

We use OMNET++ [16] as the base platform, which is
a discrete event and modular simulation tools for simulating
various communication networks. Beside the OMNET++, for
simulating the network level, physical and transport protocols

TABLE I
SIMULATION PARAMETERS

Simulation Parameter Value
Video codec MPEG-4
Video FPS 25 fps
Number of frames in a GoP 12
Selected trace file Star wars IV
Average video bit rate 256 kbps
Number of neighbors Random (3∼5)
Nodes bandwidth Random (512 kbps∼1.5 Mbps)

the INET Framework [13] is used. On the top of the network,
the overlay network is constructed by OverSim [17] which
works based on OMNET++ and the INET framework. The
OverSim is a framework that is used for simulating the overlay
networks.

PPM simulation framework has three layers in which differ-
ent parts of network are implemented: Underlay tier, Overlay
tier and Application tier.

Each layer is considered as a module and should be im-
plemented separately. As shown in Fig.4, the application and
overlay tiers are implemented in Oversim and the underlay tier
is performed via INET Framework.

To setup the simulation environment, we have used Star
War IV trace file that can be downloaded from [18], which is
MPEG-4 video coded and containing the Variable Bit Rate
(VBR) video sequence with the average rate of 256kbps.
We have also randomly assigned the bandwidth between
512Kbps to 1.5Mbps, based on the assumption in [19],to
the peers to demonstrate that our network supports peers with
heterogeneous bandwidth. Each peer in the network gets a
random number of neighbors, which is between 3 to 5 [14]. We
evaluate the PPM performance for 50 to 400 peers and ran each
scenario for 200 seconds simulation time. Other simulation
parameters are listed in Table I.

Fig. 4. PPM’s simulation framework
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Fig. 5. Pperformance metrics

A. Performance metrics

To evaluate the performance of the PPM we compared it
with an implemented CoolStreaming-Like protocol [6] that is a
mesh-based network. It is mentionable that since the push and
pull phases in PPM are done at same time and concurrently, we
do not compare it with the Interleave protocol discussed in the
related work. Our performance metrics consist of end-to-end
delay, video distortion , startup delay and control overhead.
Actually, these metrics are closely related to the quality of
service. In other words, better results obtained regarding to
these metrics, more quality of service will be reached. Hence,
the users will receive the video with the acceptable quality.

1) End-to-end delay: The end-to-end delay is defined as
the time that a frame takes to travel from the server to a peer.
As depicted in Fig.5(a), the end-to-end delay increases as the
network size grows; this is because, by increasing the number
of peers (the network size), the distance between the source
and the destination increases.

The end-to-end delay comparison between our protocol and
the CoolStreaming shows that the delay produced in the PPM
is about 15% in average lower than the CoolStreaming because
the push method reduces the number of request/response
messaging procedures; hence, the end-to-end delay decreases.

2) Video distortion: The video distortion is defined as the
ratio of lost frames over the total number of frames streamed
in the network. This parameter can be obtained from the
following Equ.1:

Distortion = (1−Total Number of Received Frames

Total Number o Frames
)

(1)
After the simulation, the results show that the superiority of

the protocol in comparison to the CoolStreaming protocol. As
it can be inferred from Fig.5(b), for all numbers of peers that
we test for our protocol, the video distortion is approximately
77% in average lower than the CoolStreaming.

The reason behind the decrement in the video distortion
in comparison to the CoolStreaming is that the push method
prevents frames from late arrival loss that causes the frame
to be useless for playing. Similar to the end-to-end delay the
distortion increases when the network scale increases.

3) Startup delay: The time between connecting to the mesh
network and starting the video playback is called startup delay.
Another result observed from the simulation is that all nodes
in both the PPM and the CoolStreaming start with the same
startup delay. When the number of peers increases, it takes less
time to start playing the video. Each node starts its playback
whenever it is connected to all of its neighbors so when a peer
is connected to the network with a larger number of peers, it
can connect to its neighbors faster and obtain the video frames;
hence, the startup delay decreases.

The startup delay increases suddenly from the network size
of 50 to 100. This is because in the network size of 50, the
nodes’ number is few enough so that all peers are closed to the
video server from the aspect of distance and obtain the video
frames very fast. But the startup delay for the network size
of 100 to 150 still increases rapidly because nodes distance
increases from the origin server so peers start their playback
with larger delay. By increasing the network size up to 300 or
400 peers, although the peers distance increases, the content
availability also grows and more data will be injected to the
network. Consequently, peers can obtain the video content
faster and the startup delay decreases. We obtained from the
simulation results that the PPM is getting a faster startup and
lower delay the prioritized frame delivery.

4) Control overhead: In each communication system, es-
pecially in P2P video streaming systems, in addition to
video data exchange, a considerable controlling messages,
such as buffermap messages, request and response messages,
are exchanged between every two nodes. Hence, it imposes
controlling overhead on the network. One of the fundamental
goals of designing the PPM is possibly, reducing the amount
of the controlling overhead. So based on the Equ.2 the PPM s
overhead equals to the ratio of the amount of controlling
messages (Dc) in packets, to the total amount data that peer
received which is the sum of controlling data and the actual
video blocks (Dtotal = Dc +Dactual).

Overhead =
Dc

Dtotal
(2)

The Fig.5(c) indicates that in our fundamental design con-
figuration we could reduce the amount of PPM’s about 6% in
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comparison with the CoolStreaming protocol. This is because
by pushing the video frames by parent nodes, we have caused
to prevent sending Frame Req message from the child nodes
to the parent nodes. Therefore it reduces the amount of
exchanged controlling messages.

B. PPM’s evaluation

To examine the capabilities of the PPM we have defined
two scenarios in which the effect of child numbers and
also the number of neighbors on the performance metrics

are investigated. It should be mentioned that the simulation
parameters are the same as those mentioned in Table I.

1) The effect of child number on the performance metrics:
In this scenario we investigate the effect of children numbers
regardless of used resource allocation technique. As Fig.6(a)
shows, by increasing the child number (the number of a peers
children) value from 2 to 3, the video distortion increases. This
is because we have designed the PPM by adding minimum
modification to the mesh network without considering any
optimal resource allocation techniques. Therefore, when the
number of children increases, the amount of required band-
width for serving both child nodes and regular neighbors will
increase. Hence, the lake of bandwidth causes an increase in
the video distortion percentage.

Further more, increasing the child numbers value can help
us to decrease the amount of end-to-end delay. Fig.6(b) proves
this fact. As seen in this figure, the end-to-end delay decreases
for the network size of 200 and 300 but does not for the size
of 50 and 100. We justify this issue by saying that for the
peers number of 50 or 100, as the network size is not big
enough for the PPM to select a best neighbor as the parent
node and the 3 child nodes may not be selected completely; so
the child number of 3 cannot help us to decrease the end-to-
end delay value; but for the peers number of 200 and 300, the



PPM parent selection and consequently child selection works
successfully.

In addition it may raise another question that why does the
end-to-end delay decrease while the video distortion increases?
To answer this question, the main reason of distortion should
be revealed in detail. We referred to the Late Arrival Loss
Distortion measure and saw that the amount of this measure
for the ChildNo = 3 is more than when have ChildNo = 2
where the ChildNo corresponds to the child number (Fig.6(c)).
It means that the frames arrive after their playback deadline
so they become lost.

On the other hand, the lost frames do not contribute in
the end-to-end delay estimation. In other words, as the defi-
nition of the end-to-end delay implies, it corresponds to the
timestamp when the frame is produced in the source server
minus the timestamp when it is received in the destination
peer. Thus, the frames lost in the network do not have any
roles in the calculation of the end-to-end delay. Consequently,
the amount of the end-to-end delay may increase or decrease
in the network. Furthermore, as the video distortion increases,
it can be inferred from Fig.6(a) and Fig.6(c) that the main
reason for the distortion to happen is the late arrival loss
that is the consequence of network congestion. For example,
suppose that a peer with a low bandwidth resides at the up
levels in the network. Hence, it cannot serve its neighbors
correctly, therefore the network becomes congested. Then, the
late arrival loss occurs and consequently, the video distortion
increases.

2) The effect of neighbors number on the PPMs perfor-
mance metrics: In this scenario we test the PPMs performance
from the aspect of peers neighbor number. Typically, to
compare with the mesh network, we considered the neighbor
number to be a random number between 3 to 5 peers.
We examined the neighbor number to be a random number
between 4 to 7 peers and observed the results.

The results emphasize the fact that by increasing the neigh-
bors number, the video distortion decreases (Fig.7(a)). This
is because the overlay distance between peers decreases so
the end-to-end delay also decreases. Fig.7(c) confirms our
claim by showing the average overlay hop count for different
number of neighbors. The figure shows that when the number
of neighbors increases, peers are become closer, so the amount
of overlay hop count decreases. Then we expect to obtain
lower end-to-end delay that can be seen in the Fig.7(b).

Although, the end-to-end delay has a better situation in this
scenario, the video distortion increases. This is due to the lake
of bandwidth and the network congestion that prevents the
peers from serving their neighbors. By the same justification,
because some frames are lost due to late arrival loss and
also only the correctly received frames are participate in
the calculation of the end-to-end delay, the main reason of
distortion in the network is the network congestion. Therefore,
the video distortion increases while the end-to-end delay is
decreased.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a hybrid push-pull mesh-based
P2P live video streaming protocol in which, by exploiting a
dynamic tree, the most important video frames are pushed to
the child nodes. The key role of the dynamic tree is that it
omits some request/response messages in the scheduling part
of the PPM. Consequently, some frames are retrieved with
lower latency. In other words, the end-to-end delay and the
controlling overhead decreased considerably. The simulation
results showed that beside the improvement on the end-to-end
delay and controlling overhead, PPM achieved lower visual
distortion compared to pure mesh network.

Our work suggests several promising directions for further
research. One direction is to study scalability and churn
handling mechanisms to see how much the PPM is resilient
when the number of peers becomes large. Another direction
is to study optimal resource allocation techniques in parent
nodes. And final direction can be the study of the effects of
various mechanisms for parent selection method and finding
optimal solution.
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