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Abstract—Many real-world systems and applications such as inaccuracies [2]. In the analysis of social networks, patérly
World Wide Web, and social interactions can be modeled as gnline social networks, the existence of missing data isoatm
networks of interacting dynamical nodes. However, in many jneyitable due to several reasons, e.g. security, USeagyiv

cases, one encounters the situation where the pattern of thed ¢ ti head. etc. Analvsis of h data ean |
node-to-node interactions (i.e., edges) or the structure foa ala aggregation overnead, etc. Analysis of such dala ean le

network is unknown. We address this issue by studying the t0 misleading estimation of network properties [3], [4].
Network Reconstruction Problem: Given a network with missing An illustrative example of network reconstruction problem

edges, how is it possible to uncover the network structure js provided in Figure 1. An example network is shown in
based on certain observable quantities extracted from paial Figure 1(a), and the network reconstruction problem where

measurements? We propose a hovel framework called CS-NetRe v th twork’ d ilable is sh in Ei
based on a newly emerged paradigm in sparse signal recovery O N€ NEWOrK's nodes are available Is shown in Figure

called Compressive Sensing (CS). The general idea of usingsC 1(b). Here, the goal is to reconstruct the network in Figure
is that if the presentation of information is sparse, then itcan | based on the partial observations in Figures 1(c) and 1(d).

be recovered by using a few number of linear measurements. |n the context of information diffusion, we assume that the
In particular, we utilize the observed data of information cas- observations in Figures 1(c) and 1(d) are the outputs of some

cades in the context of CS for network reconstruction. Our hich th d f th twork. Each
comprehensive empirical analysis over both synthetic andeal processes which are run over the edges of the network. £ac

datasets demonstrates that the proposed framework leads to Process measures a value for each node and its output is
an efficient and effective reconstruction. More specificayl, the a function of these values. Based on the node values and

results demonstrate that our framework can perform accuraely process outputs (and not the edges that process has been run
even on low number of cascades (e.g. when the number ofgyer) e aim to propose a reconstruction scheme for the

cascades is around half of the number of existing edges in the . ) .
desired network). Furthermore, our framework is capable of network. Depending on the domain of study, the observations

near-perfect reconstruction of the desired network in pregnce C€an be more implicit or complex. In this paper, for the
of 95% sparsity. In addition, we compared the performance of partial observations over the network, we consider infdioma

our framework with NetInf; one of the state-of-the-art methods cascades (e.g. virus propagation) as the process, and itode h
in inferring the networks of diffusion. The results suggestthat times (e.g. node infection times) as the node values. We will
the proposed method outperforms NetInf by an average of 10% . .
improvement based on the F-measure. cover th_e co_ncepts r_elated _to the information networks and
information diffusion in Section IIl.
|. INTRODUCTION Although the problem of network reconstruction has been

In many scientific and engineering applications, the systernalyzed in various contexts in different approaches [6]-
under study can be modeled as a set of networked elemef8$, [13], [14], in this paper for the first time, we intro-
called nodes. Usually, depending on the domain, the interattice a general framework called “CS-NetR&xmpressive
tions between these elements are shown as the edges betveasing forNetwork Reconstruction), based on the concept
the nodes. In large scale networks, the node-to-node oiteraf Compressive Sensing (CS); a recently emerged paradigm
tions or the network structure is not usually known. In suctor efficient sparse-signal recovery. Our motivation foings
situations, it is important to propose an efficient method S is that it can provide a concrete mathematical framework
reconstruct the network structure based on partial obBenga for the problem of network reconstruction.
This issue is known as the Network Reconstruction Problem:The basic idea in CS [10]-[12] is that in an appropriate
Given a network with missing edges, how is it possible tower dimensional representation (e.g. sparse vectoryémk
uncover the network structure based on certain observabiatrix, etc.), the under-sampled data of a signal have all th
guantities extracted from partial measurements? information needed about that signal. In other words, if the

Network reconstruction problem is encountered in mamyesentation of information is sparse, then it can be reeave
real-world situations. However, it is still a challengingsile by using a few number of linear measurements.This means
to be addressed by introduction of new frameworks. Ftinat a signal can be reconstructed from a small set of sampled
example, in biological systems, although there has beerdata. In many real-world situations, the existing sparisitthe
great effort in improving the technologies to uncover theetwork structure, helps to make this technique applicable
Protein interaction data, there are several reports ofr theiIn this paper, we utilize the cascade probability data from
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(a) An example network (b) The exmaple network with no (c) A Partial observation from (d) Another Partial observation
information about the edges the network structure - the from the network structure - the
process output is denoted with process output is denoted with

f(v1,v2,v3,vs5,v6). f(v2,v3,v4, vs5,v6).

Fig. 1. An example of the network reconstruction problenm.Aa example network. (b) The example network with known reodad no information about
the edges. This is the only information we have about theltgyoof the network in network reconstruction problem. Jdtkample partial observations (i.e.
node values and process outputs) over the graph used tostrezinthe network of interest.

the diffusion of an arbitrary type of information throughdlue the related concepts to the information networks. In Sactio
desired networked data. We consider each information dasc#V, we introduce our framework in details. The experimental
as the single measurements on the network structure. Thenevaluation of the proposed framework is presented in Sectio
estimate the probability that a cascade can diffuse over tfeFinally, we conclude the paper in Section VI.
network by considering the probability of the most likelger
related to a cascade. Finally, by formation of a linear syste
from the diffusion process, we utilize the theory of CS inard A. Network Reconstruction
to reconstruct the network of interest. The problem of reconstructing the network structure from
We evaluated the proposed framework over both synthefitzomplete or missing data have been studied in many differe
and real datasets with various configurations in terms of teentexts and different techniques. In [13], the main proble
dependency of its accuracy to the number of observationsing studied is the network completion problem where a
from the network. The results demonstrate that our framkewatetwork with missing nodes and edges is given and the goal
can perform accurately even on low number of cascades (8sgto estimate the unobserved part of the network. Howener, i
when the number of cascades is around half of the numhgis work it is assumed that the underlying network follotws t
of existing edges in the desired network) with the F-measukgonecker graphs model. A similar problem is also studied as
above0.5 where the number of possible edges to predict ife inference of missing links in the context of survey sangpl
5 to 10 times more than the number of running cascad@s.[14], and in social and biological networks in [6]-[9].
As another part of our experimental results, we demonstrate A related problem to network reconstruction is the matrix
the effect of different cascade parameters to the accurbcycempletion problem [15] where a data matrix with missing
the reconstruction. In addition, we evaluated the effect ehtries is given, and the goal is to predict its missing elese
the sparsity of the network structure on the performance Bbwever, there still exist many challenges to utilize theoity
our framework. In the random graph model, we observed matrix completion in the reconstruction of the networks.
that when about;% of the edges are available, meaningn example, several properties of real networks (e.g. heavy
in the presence 095% sparsity in the graph structure, wetailed degree distribution, binary valued matrix entriesg
have a near perfect recovery with the F-measure alda¥e not considered in the formulation of the matrix completion
Furthermore, we compared our framework with NetInf; ongigorithms.
of the state-of-the-art methods for inferring the netwooks  Also, the problem of link prediction relates to our work in
diffusion. The comparison showed that for different cascagvhich the aim is to predict the future edges of a network.
lengths, our method outperforms Netinf by an average of Bink prediction has been studied in social [16], and biotadi
10% improvement in terms of F-measure. networks [17].

In summary, the main contributions of this paper can be The most related problem to our work is where the goal
stated as follows: is to infer hidden underlying network on which some type
« Proposing a novel and general framework based on tbe information diffuses (e.g. virus, rumor, news, etc.),[5]

rich mathematical framework of CS. [18]. Although this problem is a special case of the network

« Ability to reconstruct the underlying network withoutreconstruction problem, we develop our general framework

any knowledge about the topological features of thgased on such configuration for better formulation and eval-
underlying network. uation. In this work, we consider the diffusion of virus,
The rest of the paper is organized as follows. In Section Hymor or any similar propagating information throughout th
we provide some of the related works and similar problenmetwork. Some of the works in information networks try to
to network reconstruction problem and a short survey on tfiad propagation links by using the structure and topoldgica
network analysis methods that utilize CS as a part of thdeatures of underlying network [19], [20]. However, we do
algorithms. In Section I, we will state the problem detahd not consider any topological assumptions about the uniderly

Il. RELATED WORK



network, and propose a framework which is based on the riah area) based on the samples aggregated from the network

mathematical framework of CS. Sensors.
) , In [31], the question of whether it is possible to quicklyanf
B. Compressive sensing and monitor the network link characteristics from indirent-

The developments in compressive sensing began with tioeend (aggregate) measurements is analyzed. This questio
seminal works in [21], [22]. The authors showed that coniies in the area of network tomography, and in this work
bining thel;-minimization and random matrices can lead tdifferent aspects of it are analyzed by using the CS theory.
efficient recovery of sparse vectors. Moreover, the authoi$so, in network traffic monitoring, we can mention the works
showed that such concepts have strong potential to be ugef33], [34]. In [33], CS theory is used in order to reduce the

in many applications. memory cost in routers and switches. In [34], CS is exploited
Consider the linear system: in order to recover the missing values of a network traffic
matrix. In [32], CS is used in the context of P2P networks.

Ymx1 = Amxn Tnx1 @) By exploiting CS theory, the authors devise an approach

Wherem << n, and we are interested in finding a feasip/®ased on random walks to spread CS random combinations to
value forz. Typically, the solution of a linear system can bdarticipants in a random peer-to-peer (P2P) overlay nétwor

obtained by the least squares minimization: The other two works which are more related to ours are [35]
_ and [36]. In both of these works, the authors aim to use CS as
a* = arg min || Az — y|3 (2) a tool to predict the topology of the network, although their

settings and assumption are completely different from each
But when matrixA is rectangular, there exist infinite numbegther. In [35], the authors introduce a new approach based
of solutions. Thus, we have to add a constraint to the systgyj the penalized linear regression to estimate sparseabarti
so that we can limit the solution space. Here, we add th@relation between different regions of interests of thairb
sparsity ofz as a constraint to obtain a solution. Specificalljaetwork, and by employing the CS theory they are able to
we assumer is k-sparse, meaning there is at méshonzero have a successful recovery of the brain network. However,
elements in the vectar, andk << n. In CS theory, it is the proposed approach in that work can not be generalized
stated that the sparsest solution can be obtained by: in other areas and can only be used in the context of brain
networks. In particular, we can not always define a partial

mn [zl st Az =y &) correlation between different regions of the network. Fangn
Since solving Eq. (3) is NP-Hard, one can dseninimization types of networks, such as online social networks, we don't
instead [21], [22]: have access to several sample subjects of the whole network.
Hence, we can not define any correlation measure and we are
nli“ [zl st. Az =y (4)  unable to use their approach in networks other than networks

with similar propertyes as brain networks. In [36], the augh
articulate a general method of addressing the problem of how
min ||z + || Az — y||2. (5) touncover the network topology using evolutionary-gantada
z based on compressive sensing. The key to solving the network
This change in the objective function (also known as LASSf2construction using evolutionary-game data problem ilies
[40], [41]) makes it possible to solve the linear system,nevehe relationship between the agents payoffs and strateffies
in presence of noise or truncated values in the matrband interactions among agents in the network can be charaetkriz
vectory. by an N x N adjacency matrix and the sparsity of a single
The [;-minimization problem of (4) can be converted toode’s neighborhood (adjacent nodes) makes the compeessiv
a linear programming problem [10]. This leads to a set aknsing framework applicable.
algorithms in CS which are referred to as “Basis Pursuif][22
There also exist other sets of algorithms that use a greedy
iterative approach, known as “Matching Pursuit’[24]. MoreA. Problem Statement
over, there are several strong guarantees for the recotistiu  Consider the static directed netwafV, E') with [V| =n
through/;-minimization [23]. nodes and set of the edgés We assume that we are totally
As we make use of the CS technique in our approach, waeare of which nodes exist in the network and have no
would like to have a quick survey of some of the works thamformation about the edges. To reconstruct the network, we
utilized this technique in the context of network analy§i& must predict the value of the elements of the adjacency raatri
has been mainly studied in the context of signal and imagence, we are looking fo&z* where||G* — G|| < e. Ideally,
processing [25]-[27] and its use in the area of network aisly we would like to have: = 0, but we examine a more general
is still in its first stages of development. setting where it is possible to have noisy or truncated data.
The most use of CS in the network analysis has been in ®&viously, this amount of information about the networkads n
field of wireless sensor networks [28]-[30]. The main idesufficient for a tractable reconstruction. Thus, we needesom
concerns the recovery of information (e.g. the temperatfire external data about the network for efficient reconstructio

Combining (2) and (4), we obtain:

I1l. PROBLEM FORMULATION
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(a) A news blogs network (b) Example cascade propagated on the blogs (c) Most likely cascade tree shown by green
network dashed links.

Fig. 2. An example of information diffusion on a news blogswwk. (a) A news blogs underlying network. (b) Example ofidden real cascade tree
(i.e. news coverage sequence) propagated on the blogsrketiaach node hit by the cascade is shown in a differnet cabor ia labeld by a time stamp
which shows the time of its news coverage. The cascade camséhble propagation of a particular news can be representedVasis Cascade =<
(#,A,ta),(A,B,tg), (A, D,tp),(D,G,tg), (G, E,tg) >. (c) The most likely cascade tree (shown by green dashed)la& an approximation for the
hidden real cascade tree. It can be seen that the most likslyade tree is not necessarily identical to the real cagcaglén (b).

We assume that there is an external process which has Bhelnformation Networks and the cascading behaviour

following features: Each diffusion of the information throughout the network,
creates an information cascade. In other words, an infoomat
1) It can be run several times on the network. cascade can be considered as a sequence of nodes, that got hit

2) lts output can be considered as the linear combinatiby the diffusion process.

of the edges of the network and a particular measureDefinition 1. [5] A cascade is a set of triple:, v, t,).,
defined on each edge. which means that cascadereached node at time ¢, by

spreading from node (by propagating over the edde, v)).
\alee denote the fact that the cascade initially starts fromesom
active nodev at timet, as (¢,v,t,).. In Figure 2(b), the

process in .Wh'Ch. any type of mformaﬂon or d|sea§e (e'gascade caused by the propagation of a particular news can
news headlines, virus, rumor, etc.) diffuses over an ugiteyl be represented as:

network. As an example, Figure 2(a) shows a news blogs
networlk, where t_he nodes represent the blogs. There can.b?vews Cascade =< (¢, A,t4), (A, B, t5), (A, D, tp),
many interpretations for the edges of such network. In this (D, G.t0), (G E,ty) >

,y Uy LG ), y Ly UE .

example, we can simply consider for any directed e@dge .
P . Py y dge) We assume the only data we can get from the cascades is the
that nodeu is one of the sources of the news for nodelt .
time that the cascade has reached a node. In the news blogs

is usually assumed that the diffusion as an external process . . .
y b ample in Figure 2(b), the cascade data can be considered

. . , e
occurs on a network, meaning the information spreads ovef : . .
9 P as the coverage of a particular news in the different blogs

the edges of an underlying network. A simple example for

the diffusion process is shown in Figure 2(b).The di1‘fusioHrOIered b_y the time stamp of the coverage. In information
networks like our news blog example, we are usually not aware

rocess on such network can be considered as the cover . .
P . . . . . ﬁigt%e nodes sources of information. Although there arentate
of a particular news in the different blogs with differen

time stamps. However, the network over which propagatioﬁ?[urces for any node, we ignore them and assume each node’s

) INformation source is its neighbors in the underlying netwo
take place is usually unknown and unobserved [5]. The gaal. X
. , is fact happens commonly in blogs networks as we do not
now is to reconstruct the unknown network over which news

L - -Know how a blog got information about a particular news.
originally propagated so that we know each node’s inforamati .
SOUTces Thus, we only get to observe paifs, ¢, )..

Definition 2. Hit time can be described as the tinig
Consider the network of news blogs in Figure 2(b). Obwhen nodev got included by the cascade In news blogs
viously, news propagation acts as a diffusion process aedample, the cascade hit times of each blog by the news

happens frequently in such network, which satisfies the figascade can be shown as:

property that we would like the external process to have. To

show that the diffusion process satisfies the second propert Cascade Hit Times =< (A,ta),(B,tB),(D,tp),

of an external process, we mention some preliminariesa@lat (F,tr), (G,tg), (E,tg) >

to the information networks and then in the section 1V, we Now, given such data about node hit times for a number of
show the second property for this process. different cascades, we aim to recover the unobserved diect

Here, we consider the information diffusion as the extern
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LP(c2|G) LP,(vi,v2) ... LP.,(vi,v;) ... LP.,(vn,vp-1)
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Fig. 3. The linear system mapped from the diffusiormefcascades on the network wheke”(cy|G) = log P(ci|G) and L P, (i,5) = logP, (3, 7). The
vectorized network adjacency is the unknown vector whichkwew that is a sparse one. Note that the orderind. 8%, (i, j)s andv; ;S must be the same.

network GG, the network over which the cascades originally Also the probability that a cascadecan occur in the graph
spread. G is defined as [5]:

We consider the independent cascade model [37] which
states that a node spreads the information to each of its P(cG) = Z P(c[T) P(T|G) (8)
neighbors independently with some chosen probabilitys Thi Ter(G)

model implicitly assumes that every nodein cascadec iS  wherer.(G) is the set of all the directed connected spanning
hit by at most one node. That is, it only matters when the yrees on a subgraph ¢f induced by the nodes that got hit by

first neighbor ofv spreads the cascade. In other words, onjascade:. In caseT is inconsistent with the observed data,
one neighbor ob actually activates. Thus, the structure of ynen p(c|7) = 0.

a cascade created by the diffusion process is fully described

by a directed tred”, contained in the directed gragh As there exist exponential number of possible trees, cal-

culating the probability that a particular cascade can bapp
C. Maximum probability cascade tree on an underlying network seems intractable. However, we use

Now, we aim to give an approximation for the directed treg approximation for the likelihood of a single cascade by

T related to a cascade We use the probabilistic model Ofconsideri_ng only the most likely tree instead of all possibl
how cascades spread over the edges of the network. propagation trees.

Definition 3. [5] Define the probabilityP.(u,v) as the P(c|G) = max P(c|T) P(T|G) 9)
conditional probability of observing cascadspreading from Ter(G)
u tov. Since the cascade can only propagate forward in timeyife consider all possible trees to be equiprobable to ocour. |
nodeu got reached after node(t, > t,), thenl%(u,v) = 0. other wordsP(T|G) = —zy:- The maximum probability tree
As an intuition, the probability of propagatioR.(u,v) be- can pe found by choosing, for each nagdean incoming edge
tween a pair of nodeg andv in the cascade decreases with (u,v) with maximum probability [39]. Figure 2(c) shows the
the more difference of their hit times. In news blogs netsorkmost probable cascade tree for the news cascade in Figyre 2(b
an old news most probably does not provide any informatigfy, it can be seen, there is no necessity that the most likely
for any blog. For simplicity, we considef.(u, v) to follow  cascade tree be the true cascade tree. However, intultional
the well-known exponential cascade transmission disiohu it can be considered as a reasonable approximation. We will
[38]: show that this approximation will be suitable to our needs.

Po(u,v) = Po(Ayy) = oL (6) IV. PROPOSEDFRAMEWORK: CS-NETREC

Based on the assumptions in the previous section, we can
WhereA, , = t, —t, anda is the adjustment parameter. ryn several cascades on the desired network. Hence, we run
A cascade stops with the probability — 3) and continues several cascades and use the cascades’ probability data to
over an edge with the probability of. The likelihood of a reconstruct the network of interest. In particular, we foam
cascade spreading in a given tree patt€iis calculated as [5]: |inear system with the edges as the unknown vector, and try
to find a solution for this system (i.e. a reconstruction fog t
P(c|T) = H BP,(u,v) H (1—p8) (7) network). More details can be seen in Algorithm IV.1.
e By weVr,(u.2)EE\Er AssumingT} is the most likely tree corresponding to the
cascadec, we hope that all the edges I represent the
WhereT = (Vr, ET) is a tree. real edges in the underlying netwo€k although this is not



necessary. Thus, after takingg from both sides of the Eq. 1) We find the most probable tree and set itlip.
(9), we can approximate it as the inner product of two vectors 2) For each possible edge i@, we calculate the edge

. transmission log probabilities. In particular, for each
o *\ T
LP(c|G) = vLP(c|T;)" . vec(Adj(G)) (10) edge inT* we use logarithm of Eq. (6) and for the

Where LP(¢|G) = log P(c|G) and vec(Adj(G)) is the rest of the edges it we consider zero probability.

vectorized binary adjacency matrix of netwok in some  3) We calculateLP(c|G) = log P(c|G) from Eg. (9) and

particular order, and)LP(c|T*) is the vector of individual add it as a row to the vectar.

edge transmission log probabilities with nonzero elements4) We form the vectowLP(c|T;’) from previous step and

corresponding to the edges ifi*. In particular, the k-th add it as a row to the matrix A.

element ofuL P(c|T) can be shown as: After the formation of the above linear system, Eq. (5) is
oLP(e|T"), = LP(i,§) = logPu(i. ) (11) used to find a sparse solution for the system.

It is obvious that for the consistency of the formulation, V. EXPERIMENTAL EVALUATION

the element order of both vectors (which correspond to all In this section, we evaluate the performance of the proposed
possible edges in the netwotk) must be the same. By thisapproach for network reconstruction. First we introduce th
approximation, we are now able to show a single run of thggnthetic and real datasets we use for the evaluation. Next,
diffusion process (i.e. a cascade) as the linear combimatio we introduce the evaluation metrics, and finally we provide
the edges of the network, and the probability measure defired analysis on the results.

on each edge. Thus, the diffusion process satisfies the decon

property of an external process that was mentioned in the Datasets

previous section. We consider both synthetic and real networks.

1) Synthetic Networks:
We use three well-known classic models for generating
directed networks, namely, the Erdos-Renyi model [43]

Algorithm IV.1 CS-NetRea(, V)
for eachc € C do

T + The Most Probable Tree far. > (Refer to with 500 edges, the Small world graph model [44] with
- o Section 11I.C) each node being connected to 4 nearest neighbors in ring
for each(i,j) € V x V d.o. N topology with the rewiring probability of 0.4, and the
LP(i, f) log P(i,7)  (i,7) € T, Barabasi-Albert model [42] with each new node getting
0 0.w. connected to 5 existing nodes. Each of these networks
> (Eq. (6)) have 100 nodes. Also, we use a variant of Kronecker
end for graph model [45], namely, Core-Periphery Kronecker
CalculateL P(c|G) = log P(c|G). > (Eq. (9)) [46] with 256 nodes which results in about 600 edges
Form the vectowLP(c|T) from LP.(i, j)s. in several generations.
> (Eqg.(11)) 2) Real NetworksWe consider three directed real-world
Add LP(c|G) as a row toy. networks. First, we consider the network of American
Add vLP(c|T}) as a row toA. football games between Division IA colleges during
end for regular season for Fall 2000 [47] which includes 115
nodes and 615 edges. Second, we consider the neural
z* < arg min ||z]|; + || Az — y||3> (Refer to Section 11.B) network of the Caenorhabditis elegans worm (C.elegans)
¥ [44] with 306 nodes and 2345 edges, and third, we use
return z* the network of 500 busiest commercial airports in the

United States [48] with 500 nodes and 2980 edges.
Now that the diffusion process satisfies both properties tha i
an external process should have, we use this process andBheetings
CS framework in order to reconstruct the network of interest In each of the test cases for the synthetic networks, we
We can modetn runs of the diffusion process as the lineagenerated 100 networks with corresponding set of cascades.
system:y = Az, where each equation in this linear system iBor the real-world datasets, we only generated 100 sets of
equal to (10) and the unknowns are the edges of the desicagcades.
network. More details about the formation of this linearteys To evaluate the accuracy of the proposed framework, we
is shown in Figure 3. can measure the precision and recall of our method. Precisio
Our algorithm consists of two main steps. First, the formaefers to the number of correctly inferred diffusion links
tion of the linear system and second, finding the solution fdivided by the total number of inferred diffusion links, and
it. recall refers to the number of correctly diffusion links idied
For each cascade(Which forms each equation in the lineaby the total number of links in the network. To consider the
system): effects of both precision and recall simultaneously, weduse
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the F-measure metric. This metric presents the harmoniomela For very large values oft, the probability of each edge

of both precision and recall: transmission approaches to 1, and thus its log becomessequal
Precision x Recall to zero which results in trivial equations in the linear syst
F=2x (0 = 0) and we won't be able to obtain any information from

Precision + Recall
recision + fieca the cascade data.

Af:Ne us? .BasgssPursuntto tioweh ollér@%pftlmlt?atlon g_r(:b:jem..rhe length of the cascades, controlled by the parameter
Ier app]c)t);:ng t’ W(\eNset at (;estho | or ffhprehlclde 6 and can significantly alter the results of any network
values of the vectar. We tested other values o threshold ant, .o stryction approach. We consider the cascades with a

_(I)_l;served no 3|gdn|f|cz|1|ntleffectt|n trlljed;lgcuracy ngl:rgpe;oa%onstanu equal tol. Obviously, when one runs a number of
Us, we consicer af elements a as a predicted €dge. .5scades on a network with a small value forthe cascades
C. Parameter Analysis will be shorter. Thus, a smaller number of edges will be

We now want to analyze the sensitivity of our approach {e’bservgd in such situations, and as a consequence, theecesul
the parameters of the cascades and if possible, fix them so fi§g2!l will be very low. The same phenomenon can be observed
we get the rest of the results based on the fixed values of {APUr framework in Figure 5, although the F-measure in BA

parameters. The information cascades have two parameterdid Small world are effected less from the small recall than
diffuse throughout the network. the others. Increasing the value 8fwill make the cascades

First, we show the sensitivity of the results & which Ionger. This causes the matrj&. to have less zero variables
represents the cascades’ speed. To this end, we consider¥Rich results in a longer, and in some cases like BA model,
cascades with a constarit equal t00.5. As shown in the less accurate performance. As seen in Flgl_Jre 5, in most of the
Figure 4, it seems for all networks, the F-measures reacH'&Works, all the measures become consistent when reached
consistency when the value of is around3. Hence we fix (© the value of0.5 for 5. Thus we fixj3 at this value.
this value fora. For the small values o, i.e. near zero
values, the probability of each edge transmission (Eq.w))
get closer to zero. This causes more truncated values in th@®bviously, it is almost never possible to have equal number
matrix A and also in calculation of P(¢|G). Thus, we expect of processes to the number of possible edges in a network as
a lower accuracy for small values afas shown in the Figure its computationally expensive. Also, increasing the nundfe

D. Cascade dependency:
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Fig. 6. Different networks cascade dependency using CRétet

transmitting cascades over the network leads to more agecuriaurther, we observe that the F-measure in Football datset,
prediction of the network topology. We tested this scenarto the lower number of vertices, reaches the 0.9 F-measure by
by running 250 to 2500 cascades on each of the syntheti@00 cascades. Thus, we observe that in spite of the sanee scal
networks and the Football network, where there are arouafithis dataset to the synthetic ones, we need more number of
10000 possible edges in the graph. On other real dataseteasurements to reach a high F-measure value.
we ran 250 to 10000 cascades. In C.elegans dataset there afthe reason behind better results for F-measure in higher
about 93000 possible edges and in US Top 500 dataset, #hignber of cascades that can be presented in several aspects.
number reaches to around 250000. In all of our measuremefiist, with more cascades we traverse more edges of the graph
we consider the resulting F-measures. Meanwhile, the transmission probability over an edge gets
In Figure 6, particularly for Small world and BA datasetsepeated in more equations of the linear system. Thus, the
which are closer to real-world graphs than ER model, it can leé¢fect of that edge on the increase of cascade probabititins
observed that even on low number of cascades (e.g. half of 4 seen more and the predicted value for the corresponding
number of existing edges in the graphs), we have high valuglement in the vectorized adjacency matrix will get a higher
F-measure, almost all above 0.5, considering around 100@ue (i.e. passes the considered prediction threshold}. F
possible edges to be predicted. Thus the results demamnstthérmore, in CS theory, higher number of measurements (i.e.
that our framework can work accurately even on very lowows of the matrix4) most probably results in better recovery
information from the network of interest. In the Kroneckewhich can be observed in this result.
dataset and Small world, we have above 0.8 F-measure when
the number of cascades are roughly the same as the numberrhe effect of the sparsity of the network adjacency:

of edges in the graph. ] o
According to the CS theory, the less sparsity in the unknown

1 vector, the less accuracy in its recovery. To show this phe-
09 nomenon in our framework, we consider several ER networks
with 100 vertices and number of edges ranging from 500 to
5000. In other words, the sparsity ranges from 0.5 to 0.95.

Again we consider all the F-measures to evaluate the results

goe As expected, in Figure 7, we observe that the more sparsity

“os in the same scale (i.e. number of vertices) yields to theebett
04 performance of our approach. In 0.95 sparsity, we have a

near perfect reconstruction. However, decreasing thesi#par
‘ : ‘ ‘ ‘ ‘ to 0.9, diminishes the F-measure to below 0.8. Thus, in the
“* o5 0s o5 0ss o7 spasne 0808 09 0% 1 ggme dataset, the network reconstruction with more sparsit
_ _ _ can result in higher accuracy.
g C Nt i oss vy i tnenn vt adosaey _The sparsity can not be compared in different datasets. To
in the reconstruction of the network. see this, we can consider the results for C.elegans and US
Top 500 in Figure 6(a) again. Both datasets have above 0.97
In real datasets, we have the same performance in lgparsity in their vectorized adjacency matrix. But due te th
number of cascades as in the synthetic datasets. In C.sledarger scale of US Top 500, and the more cascades needed for
and US Top 500, with 2000 cascades we get around O.fle better reconstruction, the F-measure related to Gieteg
and 0.5 F-measure while there are around 93000 and 250@00elatively higher than US Top 500 with the same number
possible edges to predict in each of these datasets ragdgcti of cascades.
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Fig. 8. Performance comparison of CS-NetRec with Netinfisadering different values of parameter (i.e. cascade lengths) ane- 1. (a,b,c,d) Sythetic
networks (e,f,g) Real networks. We considered 2500 cascimleBA, ER, SmallWorld and Football datasets, 8000 cascéoleKronecker graph and 10000
cascades for C.elegans and US Top 500. The numbers in thetlpesas show the number of edges recovered.

F. Performance comparison with Netinf: by our method in F-measure is about 0.5, 0.25 and 0.18 for
) Small world, ER and Football datasets respectively. Oleral
As we present our proposed framework in the context @i different cascade lengths, our method outperformsmfietl

information networks, we compared the performance of oQy an average 9-10% improvement in terms of F-measure.
method with NetInf; one of the state-of-the-art methods for

inferring networks of diffusion [5]. VI. CONCLUSION

We consider different values for the parameteras we In this paper, we studied the problem of network reconstruc-
would like to evaluate the performance of methods in presention and introduced a general framework based on which any
of more local information (i.e. shorter cascades) and motgpe of the observations on an external process on the nletwor
global information (i.e. longer cascades). We alsosédb 1 can be utilized to reconstruct the network of interest. As a
in our tests. Given a fixed number of cascades, we ran Netbfecial case, we considered the diffusion of the infornmatio
with the number of iterations same as the number of edges thascades as an external process on the underlying netwprk. B
our method can reconstruct. The results can be seen in Figutiéizing the probabilistic measures of information ca$es,
8. It can be observed that in all test cases, the resultedwe formulated the problem of network reconstruction as a
measure in our method is higher than or equal to NetInf atidear system in the context of compressive sensing. Since
as we increase the value ¢f the difference in F-measuremost of the time, this linear system is under-determined,
becomes more. In Small world, ER, and Football datasetge used the theory of compressive sensing as a tool to
the difference is more clear. I8 = 0.9 the improvement reconstruct the network of interest. By numerical experitag
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we demonstrated that this framework will converge to adeurg23] E. J. CandesThe restricted isometry property and its implications
solutions. In addition, the results suggest that in the ednt for compressed sensingcompte Rendus de lIAcademie des Sciences,

finf fi i K thod f bett 346:589592, 2008.
ol Informaton networks, our metnod can perrorm even be ?f4] J. Tropp and A. GilbertSignal recovery from random measurements

than the state-of-the-art method, NetInf. via orthogonal matching pursyitEEE Trans. on Information Theory,
Several directions can be pursued for the future work. Hege 53(12):46554666, December 2007.

d th di tri th K t d ﬂgzsg A. C. Sankaranarayanan, P. K. Turaga, R. G. Baraniukrar@hellappa,
we use € adjacency matrix as the unknown vector an u Compressive Acquisition of Dynamic ScenEsropean Conference on

it is interesting to look for ways to reduce the dimensidgali  Computer Vision, Crete, Greece, September 2010.
of the linear system. Also it would be interesting to use pth&®¢l M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, KlliKand R.

. Baraniuk, Single-pixel imaging via compressive samplilgEE Signal
external processes and utilize other features for the m&two  pyycessing ,\fagffzine 25(%) gpp. 83 - gpl March 200%_ 6 9
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