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Abstract—Many real-world systems and applications such as
World Wide Web, and social interactions can be modeled as
networks of interacting dynamical nodes. However, in many
cases, one encounters the situation where the pattern of the
node-to-node interactions (i.e., edges) or the structure of a
network is unknown. We address this issue by studying the
Network Reconstruction Problem: Given a network with missing
edges, how is it possible to uncover the network structure
based on certain observable quantities extracted from partial
measurements? We propose a novel framework called CS-NetRec
based on a newly emerged paradigm in sparse signal recovery
called Compressive Sensing (CS). The general idea of using CS
is that if the presentation of information is sparse, then it can
be recovered by using a few number of linear measurements.
In particular, we utilize the observed data of information cas-
cades in the context of CS for network reconstruction. Our
comprehensive empirical analysis over both synthetic and real
datasets demonstrates that the proposed framework leads to
an efficient and effective reconstruction. More specifically, the
results demonstrate that our framework can perform accurately
even on low number of cascades (e.g. when the number of
cascades is around half of the number of existing edges in the
desired network). Furthermore, our framework is capable of
near-perfect reconstruction of the desired network in presence
of 95% sparsity. In addition, we compared the performance of
our framework with NetInf; one of the state-of-the-art methods
in inferring the networks of diffusion. The results suggestthat
the proposed method outperforms NetInf by an average of 10%
improvement based on the F-measure.

I. I NTRODUCTION

In many scientific and engineering applications, the systems
under study can be modeled as a set of networked elements,
called nodes. Usually, depending on the domain, the interac-
tions between these elements are shown as the edges between
the nodes. In large scale networks, the node-to-node interac-
tions or the network structure is not usually known. In such
situations, it is important to propose an efficient method to
reconstruct the network structure based on partial observations.
This issue is known as the Network Reconstruction Problem:
Given a network with missing edges, how is it possible to
uncover the network structure based on certain observable
quantities extracted from partial measurements?

Network reconstruction problem is encountered in many
real-world situations. However, it is still a challenging issue
to be addressed by introduction of new frameworks. For
example, in biological systems, although there has been a
great effort in improving the technologies to uncover the
Protein interaction data, there are several reports of their

inaccuracies [2]. In the analysis of social networks, particularly
online social networks, the existence of missing data is almost
inevitable due to several reasons, e.g. security, user privacy,
data aggregation overhead, etc. Analysis of such data can lead
to misleading estimation of network properties [3], [4].

An illustrative example of network reconstruction problem
is provided in Figure I. An example network is shown in
Figure 1(a), and the network reconstruction problem where
only the network’s nodes are available is shown in Figure
1(b). Here, the goal is to reconstruct the network in Figure
I based on the partial observations in Figures 1(c) and 1(d).
In the context of information diffusion, we assume that the
observations in Figures 1(c) and 1(d) are the outputs of some
processes which are run over the edges of the network. Each
process measures a value for each node and its output is
a function of these values. Based on the node values and
process outputs (and not the edges that process has been run
over), we aim to propose a reconstruction scheme for the
network. Depending on the domain of study, the observations
can be more implicit or complex. In this paper, for the
partial observations over the network, we consider information
cascades (e.g. virus propagation) as the process, and node hit
times (e.g. node infection times) as the node values. We will
cover the concepts related to the information networks and
information diffusion in Section III.

Although the problem of network reconstruction has been
analyzed in various contexts in different approaches [6]–
[9], [13], [14], in this paper for the first time, we intro-
duce a general framework called “CS-NetRec”(Compressive
Sensing forNetwork Reconstruction), based on the concept
of Compressive Sensing (CS); a recently emerged paradigm
for efficient sparse-signal recovery. Our motivation for using
CS is that it can provide a concrete mathematical framework
for the problem of network reconstruction.

The basic idea in CS [10]–[12] is that in an appropriate
lower dimensional representation (e.g. sparse vector, low-rank
matrix, etc.), the under-sampled data of a signal have all the
information needed about that signal. In other words, if the
presentation of information is sparse, then it can be recovered
by using a few number of linear measurements.This means
that a signal can be reconstructed from a small set of sampled
data. In many real-world situations, the existing sparsityin the
network structure, helps to make this technique applicable.

In this paper, we utilize the cascade probability data from
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(a) An example network (b) The exmaple network with no
information about the edges

(c) A Partial observation from
the network structure - the
process output is denoted with
f(v1, v2, v3, v5, v6).

(d) Another Partial observation
from the network structure - the
process output is denoted with
f(v2, v3, v4, v5, v6).

Fig. 1. An example of the network reconstruction problem. (a) An example network. (b) The example network with known nodes and no information about
the edges. This is the only information we have about the topology of the network in network reconstruction problem. (c,d) Example partial observations (i.e.
node values and process outputs) over the graph used to reconstruct the network of interest.

the diffusion of an arbitrary type of information throughout the
desired networked data. We consider each information cascade
as the single measurements on the network structure. Then we
estimate the probability that a cascade can diffuse over the
network by considering the probability of the most likely tree
related to a cascade. Finally, by formation of a linear system
from the diffusion process, we utilize the theory of CS in order
to reconstruct the network of interest.

We evaluated the proposed framework over both synthetic
and real datasets with various configurations in terms of the
dependency of its accuracy to the number of observations
from the network. The results demonstrate that our framework
can perform accurately even on low number of cascades (e.g.
when the number of cascades is around half of the number
of existing edges in the desired network) with the F-measure
above0.5 where the number of possible edges to predict is
5 to 10 times more than the number of running cascades.
As another part of our experimental results, we demonstrated
the effect of different cascade parameters to the accuracy of
the reconstruction. In addition, we evaluated the effect of
the sparsity of the network structure on the performance of
our framework. In the random graph model, we observed
that when about5% of the edges are available, meaning
in the presence of95% sparsity in the graph structure, we
have a near perfect recovery with the F-measure above0.9.
Furthermore, we compared our framework with NetInf; one
of the state-of-the-art methods for inferring the networksof
diffusion. The comparison showed that for different cascade
lengths, our method outperforms NetInf by an average of 9-
10% improvement in terms of F-measure.

In summary, the main contributions of this paper can be
stated as follows:

• Proposing a novel and general framework based on the
rich mathematical framework of CS.

• Ability to reconstruct the underlying network without
any knowledge about the topological features of the
underlying network.

The rest of the paper is organized as follows. In Section II,
we provide some of the related works and similar problems
to network reconstruction problem and a short survey on the
network analysis methods that utilize CS as a part of their
algorithms. In Section III, we will state the problem details and

the related concepts to the information networks. In Section
IV, we introduce our framework in details. The experimental
evaluation of the proposed framework is presented in Section
V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

A. Network Reconstruction

The problem of reconstructing the network structure from
incomplete or missing data have been studied in many different
contexts and different techniques. In [13], the main problem
being studied is the network completion problem where a
network with missing nodes and edges is given and the goal
is to estimate the unobserved part of the network. However, in
this work it is assumed that the underlying network follows the
Kronecker graphs model. A similar problem is also studied as
the inference of missing links in the context of survey sampling
in [14], and in social and biological networks in [6]–[9].

A related problem to network reconstruction is the matrix
completion problem [15] where a data matrix with missing
entries is given, and the goal is to predict its missing elements.
However, there still exist many challenges to utilize the theory
of matrix completion in the reconstruction of the networks.As
an example, several properties of real networks (e.g. heavy-
tailed degree distribution, binary valued matrix entries)are
not considered in the formulation of the matrix completion
algorithms.

Also, the problem of link prediction relates to our work in
which the aim is to predict the future edges of a network.
Link prediction has been studied in social [16], and biological
networks [17].

The most related problem to our work is where the goal
is to infer hidden underlying network on which some type
of information diffuses (e.g. virus, rumor, news, etc.) [5],
[18]. Although this problem is a special case of the network
reconstruction problem, we develop our general framework
based on such configuration for better formulation and eval-
uation. In this work, we consider the diffusion of virus,
rumor or any similar propagating information throughout the
network. Some of the works in information networks try to
find propagation links by using the structure and topological
features of underlying network [19], [20]. However, we do
not consider any topological assumptions about the underlying
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network, and propose a framework which is based on the rich
mathematical framework of CS.

B. Compressive sensing

The developments in compressive sensing began with the
seminal works in [21], [22]. The authors showed that com-
bining the l1-minimization and random matrices can lead to
efficient recovery of sparse vectors. Moreover, the authors
showed that such concepts have strong potential to be used
in many applications.

Consider the linear system:

ym×1 = Am×n xn×1 (1)

Wherem << n, and we are interested in finding a feasible
value forx. Typically, the solution of a linear system can be
obtained by the least squares minimization:

x∗ = arg min
x

‖Ax− y‖22 (2)

But when matrixA is rectangular, there exist infinite number
of solutions. Thus, we have to add a constraint to the system
so that we can limit the solution space. Here, we add the
sparsity ofx as a constraint to obtain a solution. Specifically,
we assumex is k-sparse, meaning there is at mostk nonzero
elements in the vectorx, and k << n. In CS theory, it is
stated that the sparsest solution can be obtained by:

min
x
‖x‖0 s.t. Ax = y (3)

Since solving Eq. (3) is NP-Hard, one can usel1-minimization
instead [21], [22]:

min
x
‖x‖1 s.t. Ax = y (4)

Combining (2) and (4), we obtain:

min
x
‖x‖1 + ‖Ax− y‖22. (5)

This change in the objective function (also known as LASSO
[40], [41]) makes it possible to solve the linear system, even
in presence of noise or truncated values in the matrixA, and
vectory.

The l1-minimization problem of (4) can be converted to
a linear programming problem [10]. This leads to a set of
algorithms in CS which are referred to as “Basis Pursuit”[22].
There also exist other sets of algorithms that use a greedy
iterative approach, known as “Matching Pursuit”[24]. More-
over, there are several strong guarantees for the reconstruction
throughl1-minimization [23].

As we make use of the CS technique in our approach, we
would like to have a quick survey of some of the works that
utilized this technique in the context of network analysis.CS
has been mainly studied in the context of signal and image
processing [25]–[27] and its use in the area of network analysis
is still in its first stages of development.

The most use of CS in the network analysis has been in the
field of wireless sensor networks [28]–[30]. The main idea
concerns the recovery of information (e.g. the temperatureof

an area) based on the samples aggregated from the network
sensors.

In [31], the question of whether it is possible to quickly infer
and monitor the network link characteristics from indirectend-
to-end (aggregate) measurements is analyzed. This question
lies in the area of network tomography, and in this work
different aspects of it are analyzed by using the CS theory.
Also, in network traffic monitoring, we can mention the works
in [33], [34]. In [33], CS theory is used in order to reduce the
memory cost in routers and switches. In [34], CS is exploited
in order to recover the missing values of a network traffic
matrix. In [32], CS is used in the context of P2P networks.
By exploiting CS theory, the authors devise an approach
based on random walks to spread CS random combinations to
participants in a random peer-to-peer (P2P) overlay network.

The other two works which are more related to ours are [35]
and [36]. In both of these works, the authors aim to use CS as
a tool to predict the topology of the network, although their
settings and assumption are completely different from each
other. In [35], the authors introduce a new approach based
on the penalized linear regression to estimate sparse partial
correlation between different regions of interests of the brain
network, and by employing the CS theory they are able to
have a successful recovery of the brain network. However,
the proposed approach in that work can not be generalized
in other areas and can only be used in the context of brain
networks. In particular, we can not always define a partial
correlation between different regions of the network. For many
types of networks, such as online social networks, we don’t
have access to several sample subjects of the whole network.
Hence, we can not define any correlation measure and we are
unable to use their approach in networks other than networks
with similar propertyes as brain networks. In [36], the authors
articulate a general method of addressing the problem of how
to uncover the network topology using evolutionary-game data
based on compressive sensing. The key to solving the network
reconstruction using evolutionary-game data problem liesin
the relationship between the agents payoffs and strategies. The
interactions among agents in the network can be characterized
by anN × N adjacency matrix and the sparsity of a single
node’s neighborhood (adjacent nodes) makes the compressive
sensing framework applicable.

III. PROBLEM FORMULATION

A. Problem Statement

Consider the static directed networkG(V,E) with |V | = n

nodes and set of the edgesE. We assume that we are totally
aware of which nodes exist in the network and have no
information about the edges. To reconstruct the network, we
must predict the value of the elements of the adjacency matrix.
Hence, we are looking forG∗ where‖G∗ −G‖ ≤ ǫ. Ideally,
we would like to haveǫ = 0, but we examine a more general
setting where it is possible to have noisy or truncated data.
Obviously, this amount of information about the network is not
sufficient for a tractable reconstruction. Thus, we need some
external data about the network for efficient reconstruction.
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(a) A news blogs network (b) Example cascade propagated on the blogs
network

(c) Most likely cascade tree shown by green
dashed links.

Fig. 2. An example of information diffusion on a news blogs network. (a) A news blogs underlying network. (b) Example of a hidden real cascade tree
(i.e. news coverage sequence) propagated on the blogs network. Each node hit by the cascade is shown in a differnet color and is labeld by a time stamp
which shows the time of its news coverage. The cascade causedby the propagation of a particular news can be represented as: News Cascade =<
(φ,A, tA), (A,B, tB), (A,D, tD), (D,G, tG), (G,E, tE) >. (c) The most likely cascade tree (shown by green dashed links) as an approximation for the
hidden real cascade tree. It can be seen that the most likely cascade tree is not necessarily identical to the real cascadetree in (b).

We assume that there is an external process which has the
following features:

1) It can be run several times on the network.
2) Its output can be considered as the linear combination

of the edges of the network and a particular measure
defined on each edge.

Here, we consider the information diffusion as the external
process in which any type of information or disease (e.g.
news headlines, virus, rumor, etc.) diffuses over an underlying
network. As an example, Figure 2(a) shows a news blogs
network, where the nodes represent the blogs. There can be
many interpretations for the edges of such network. In this
example, we can simply consider for any directed edge(u, v)
that nodeu is one of the sources of the news for nodev. It
is usually assumed that the diffusion as an external process
occurs on a network, meaning the information spreads over
the edges of an underlying network. A simple example for
the diffusion process is shown in Figure 2(b).The diffusion
process on such network can be considered as the coverage
of a particular news in the different blogs with different
time stamps. However, the network over which propagations
take place is usually unknown and unobserved [5]. The goal
now is to reconstruct the unknown network over which news
originally propagated so that we know each node’s information
sources.

Consider the network of news blogs in Figure 2(b). Ob-
viously, news propagation acts as a diffusion process and
happens frequently in such network, which satisfies the first
property that we would like the external process to have. To
show that the diffusion process satisfies the second property
of an external process, we mention some preliminaries related
to the information networks and then in the section IV, we
show the second property for this process.

B. Information Networks and the cascading behaviour

Each diffusion of the information throughout the network,
creates an information cascade. In other words, an information
cascade can be considered as a sequence of nodes, that got hit
by the diffusion process.

Definition 1. [5] A cascade is a set of triples(u, v, tv)c,
which means that cascadec reached nodev at time tv by
spreading from nodeu (by propagating over the edge(u, v)).
We denote the fact that the cascade initially starts from some
active nodev at time tv as (φ, v, tv)c. In Figure 2(b), the
cascade caused by the propagation of a particular news can
be represented as:

News Cascade =< (φ,A, tA), (A,B, tB), (A,D, tD),
(D,G, tG), (G,E, tE) >.

We assume the only data we can get from the cascades is the
time that the cascade has reached a node. In the news blogs
example in Figure 2(b), the cascade data can be considered
as the coverage of a particular news in the different blogs
ordered by the time stamp of the coverage. In information
networks like our news blog example, we are usually not aware
of the nodes sources of information. Although there are latent
sources for any node, we ignore them and assume each node’s
information source is its neighbors in the underlying network.
This fact happens commonly in blogs networks as we do not
know how a blog got information about a particular news.
Thus, we only get to observe pairs(v, tv)c.

Definition 2. Hit time can be described as the timetv
when nodev got included by the cascadec. In news blogs
example, the cascade hit times of each blog by the news
cascade can be shown as:

Cascade Hit T imes =< (A, tA), (B, tB), (D, tD),
(F, tF ), (G, tG), (E, tE) >

Now, given such data about node hit times for a number of
different cascades, we aim to recover the unobserved directed
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Fig. 3. The linear system mapped from the diffusion ofm cascades on the network whereLP (ck|G) = logP (ck|G) andLPck (i, j) = logPck (i, j). The
vectorized network adjacency is the unknown vector which weknow that is a sparse one. Note that the ordering ofLPck (i, j)s andvi,js must be the same.

network G, the network over which the cascades originally
spread.

We consider the independent cascade model [37] which
states that a node spreads the information to each of its
neighbors independently with some chosen probability. This
model implicitly assumes that every nodev in cascadec is
hit by at most one nodeu. That is, it only matters when the
first neighbor ofv spreads the cascade. In other words, only
one neighbor ofv actually activatesv. Thus, the structure of
a cascadec created by the diffusion process is fully described
by a directed treeT , contained in the directed graphG.

C. Maximum probability cascade tree

Now, we aim to give an approximation for the directed tree
T related to a cascadec. We use the probabilistic model of
how cascades spread over the edges of the network.

Definition 3. [5] Define the probabilityPc(u, v) as the
conditional probability of observing cascadec spreading from
u to v. Since the cascade can only propagate forward in time, if
nodeu got reached after nodev (tu > tv), thenPc(u, v) = 0.
As an intuition, the probability of propagationPc(u, v) be-
tween a pair of nodesu andv in the cascadec decreases with
the more difference of their hit times. In news blogs networks,
an old news most probably does not provide any information
for any blog. For simplicity, we considerPc(u, v) to follow
the well-known exponential cascade transmission distribution
[38]:

Pc(u, v) = Pc(∆u,v) = e−
∆u,v

α (6)

Where∆u,v = tv − tu andα is the adjustment parameter.
A cascade stops with the probability(1− β) and continues

over an edge with the probability ofβ. The likelihood of a
cascade spreading in a given tree patternT is calculated as [5]:

P (c|T ) =
∏

u,v∈ET

βPc(u, v)
∏

u∈VT ,(u,x)∈E\ET

(1− β) (7)

WhereT = (VT , ET ) is a tree.

Also the probability that a cascadec can occur in the graph
G is defined as [5]:

P (c|G) =
∑

T∈τc(G)

P (c|T ) P (T |G) (8)

Whereτc(G) is the set of all the directed connected spanning
trees on a subgraph ofG induced by the nodes that got hit by
cascadec. In caseT is inconsistent with the observed data,
thenP (c|T ) = 0.

As there exist exponential number of possible trees, cal-
culating the probability that a particular cascade can happen
on an underlying network seems intractable. However, we use
an approximation for the likelihood of a single cascade by
considering only the most likely tree instead of all possible
propagation trees.

P (c|G) = max
T∈τc(G)

P (c|T ) P (T |G) (9)

We consider all possible trees to be equiprobable to occur. In
other wordsP (T |G) = 1

|τc(G)| . The maximum probability tree
can be found by choosing, for each nodev, an incoming edge
(u, v) with maximum probability [39]. Figure 2(c) shows the
most probable cascade tree for the news cascade in Figure 2(b).
As it can be seen, there is no necessity that the most likely
cascade tree be the true cascade tree. However, intuitionally
it can be considered as a reasonable approximation. We will
show that this approximation will be suitable to our needs.

IV. PROPOSEDFRAMEWORK: CS-NETREC

Based on the assumptions in the previous section, we can
run several cascades on the desired network. Hence, we run
several cascades and use the cascades’ probability data to
reconstruct the network of interest. In particular, we forma
linear system with the edges as the unknown vector, and try
to find a solution for this system (i.e. a reconstruction for the
network). More details can be seen in Algorithm IV.1.

AssumingT ∗
c is the most likely tree corresponding to the

cascadec, we hope that all the edges inT ∗
c represent the

real edges in the underlying networkG, although this is not
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necessary. Thus, after takinglog from both sides of the Eq.
(9), we can approximate it as the inner product of two vectors:

LP (c|G) = vLP (c|T ∗
c )

T . vec(Adj(G)) (10)

Where LP (c|G) = logP (c|G) and vec(Adj(G)) is the
vectorized binary adjacency matrix of networkG in some
particular order, andvLP (c|T ∗

c ) is the vector of individual
edge transmission log probabilities with nonzero elements
corresponding to the edges inT ∗

c . In particular, the k-th
element ofvLP (c|T ∗

c ) can be shown as:

vLP (c|T ∗
c )k = LPc(i, j) = logPc(i, j) (11)

It is obvious that for the consistency of the formulation,
the element order of both vectors (which correspond to all
possible edges in the networkG) must be the same. By this
approximation, we are now able to show a single run of the
diffusion process (i.e. a cascade) as the linear combination of
the edges of the network, and the probability measure defined
on each edge. Thus, the diffusion process satisfies the second
property of an external process that was mentioned in the
previous section.

Algorithm IV.1 CS-NetRec(C, V )
for eachc ∈ C do

T ∗
c ← The Most Probable Tree forc. ⊲ (Refer to

- Section III.C)
for each(i, j) ∈ V × V do

LPc(i, j)←

{

logPc(i, j) (i, j) ∈ T ∗
c

0 o.w.

⊲ (Eq. (6))
end for
CalculateLP (c|G) = logP (c|G). ⊲ (Eq. (9))
Form the vectorvLP (c|T ∗

c ) from LPc(i, j)s.
⊲ (Eq.(11))

Add LP (c|G) as a row toy.
Add vLP (c|T ∗

c ) as a row toA.
end for

x∗ ← arg min
x

‖x‖1 + ‖Ax− y‖22 ⊲ (Refer to Section II.B)

return x∗

Now that the diffusion process satisfies both properties that
an external process should have, we use this process and the
CS framework in order to reconstruct the network of interest.

We can modelm runs of the diffusion process as the linear
system:y = Ax, where each equation in this linear system is
equal to (10) and the unknowns are the edges of the desired
network. More details about the formation of this linear system
is shown in Figure 3.

Our algorithm consists of two main steps. First, the forma-
tion of the linear system and second, finding the solution for
it.

For each cascadec (Which forms each equation in the linear
system):

1) We find the most probable tree and set it toT ∗
c .

2) For each possible edge inG, we calculate the edge
transmission log probabilities. In particular, for each
edge inT ∗

c we use logarithm of Eq. (6) and for the
rest of the edges inG we consider zero probability.

3) We calculateLP (c|G) = logP (c|G) from Eq. (9) and
add it as a row to the vectory.

4) We form the vectorvLP (c|T ∗
c ) from previous step and

add it as a row to the matrix A.

After the formation of the above linear system, Eq. (5) is
used to find a sparse solution for the system.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
approach for network reconstruction. First we introduce the
synthetic and real datasets we use for the evaluation. Next,
we introduce the evaluation metrics, and finally we provide
an analysis on the results.

A. Datasets

We consider both synthetic and real networks.

1) Synthetic Networks:
We use three well-known classic models for generating
directed networks, namely, the Erdos-Renyi model [43]
with 500 edges, the Small world graph model [44] with
each node being connected to 4 nearest neighbors in ring
topology with the rewiring probability of 0.4, and the
Barabasi-Albert model [42] with each new node getting
connected to 5 existing nodes. Each of these networks
have 100 nodes. Also, we use a variant of Kronecker
graph model [45], namely, Core-Periphery Kronecker
[46] with 256 nodes which results in about 600 edges
in several generations.

2) Real Networks:We consider three directed real-world
networks. First, we consider the network of American
football games between Division IA colleges during
regular season for Fall 2000 [47] which includes 115
nodes and 615 edges. Second, we consider the neural
network of the Caenorhabditis elegans worm (C.elegans)
[44] with 306 nodes and 2345 edges, and third, we use
the network of 500 busiest commercial airports in the
United States [48] with 500 nodes and 2980 edges.

B. Settings

In each of the test cases for the synthetic networks, we
generated 100 networks with corresponding set of cascades.
For the real-world datasets, we only generated 100 sets of
cascades.

To evaluate the accuracy of the proposed framework, we
can measure the precision and recall of our method. Precision
refers to the number of correctly inferred diffusion links
divided by the total number of inferred diffusion links, and
recall refers to the number of correctly diffusion links divided
by the total number of links in the network. To consider the
effects of both precision and recall simultaneously, we used
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(a) Synthetic networks (b) Real networks

Fig. 4. α parameter analysis using CS-NetRec - It can be seen that the valueα = 3 is where the F-measures become cosistent.

(a) Synthetic networks (b) Real networks

Fig. 5. β parameter analysis using CS-NetRec - The value ofβ = 0.5 is where the F-measures become cosistent.

the F-measure metric. This metric presents the harmonic mean
of both precision and recall:

F = 2×
Precision×Recall

Precision+Recall

We use Basis Pursuit to solve our optimization problem.
After applying CS, we set a threshold of0.5 for the predicted
values of the vectorx. We tested other values of threshold and
observed no significant effect in the accuracy of our approach.
Thus, we consider all elements above0.5 as a predicted edge.

C. Parameter Analysis

We now want to analyze the sensitivity of our approach to
the parameters of the cascades and if possible, fix them so that
we get the rest of the results based on the fixed values of the
parameters. The information cascades have two parameters to
diffuse throughout the network.

First, we show the sensitivity of the results toα which
represents the cascades’ speed. To this end, we consider the
cascades with a constantβ equal to 0.5. As shown in the
Figure 4, it seems for all networks, the F-measures reach a
consistency when the value ofα is around3. Hence we fix
this value forα. For the small values ofα, i.e. near zero
values, the probability of each edge transmission (Eq. (6))will
get closer to zero. This causes more truncated values in the
matrixA and also in calculation ofLP (c|G). Thus, we expect
a lower accuracy for small values ofα as shown in the Figure

4. For very large values ofα, the probability of each edge
transmission approaches to 1, and thus its log becomes equals
to zero which results in trivial equations in the linear system
(0 = 0) and we won’t be able to obtain any information from
the cascade data.

The length of the cascades, controlled by the parameter
β, and can significantly alter the results of any network
reconstruction approach. We consider the cascades with a
constantα equal to1. Obviously, when one runs a number of
cascades on a network with a small value forβ, the cascades
will be shorter. Thus, a smaller number of edges will be
observed in such situations, and as a consequence, the resulted
recall will be very low. The same phenomenon can be observed
in our framework in Figure 5, although the F-measure in BA
and Small world are effected less from the small recall than
the others. Increasing the value ofβ will make the cascades
longer. This causes the matrixA to have less zero variables
which results in a longer, and in some cases like BA model,
less accurate performance. As seen in Figure 5, in most of the
networks, all the measures become consistent when reached
to the value of0.5 for β. Thus we fixβ at this value.

D. Cascade dependency:

Obviously, it is almost never possible to have equal number
of processes to the number of possible edges in a network as
its computationally expensive. Also, increasing the number of
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(a) Synthetic networks (b) Real networks

Fig. 6. Different networks cascade dependency using CS-NetRec

transmitting cascades over the network leads to more accurate
prediction of the network topology. We tested this scenario
by running 250 to 2500 cascades on each of the synthetic
networks and the Football network, where there are around
10000 possible edges in the graph. On other real datasets,
we ran 250 to 10000 cascades. In C.elegans dataset there are
about 93000 possible edges and in US Top 500 dataset, this
number reaches to around 250000. In all of our measurements
we consider the resulting F-measures.

In Figure 6, particularly for Small world and BA datasets
which are closer to real-world graphs than ER model, it can be
observed that even on low number of cascades (e.g. half of the
number of existing edges in the graphs), we have high values
F-measure, almost all above 0.5, considering around 10000
possible edges to be predicted. Thus the results demonstrate
that our framework can work accurately even on very low
information from the network of interest. In the Kronecker
dataset and Small world, we have above 0.8 F-measure when
the number of cascades are roughly the same as the number
of edges in the graph.

Fig. 7. The effect of the sparsity of the network adjacency inER model
using CS-NetRec. the less sparsity in the unknown vector, the less accuracy
in the reconstruction of the network.

In real datasets, we have the same performance in low
number of cascades as in the synthetic datasets. In C.elegans
and US Top 500, with 2000 cascades we get around 0.75
and 0.5 F-measure while there are around 93000 and 250000
possible edges to predict in each of these datasets respectively.

Further, we observe that the F-measure in Football dataset,due
to the lower number of vertices, reaches the 0.9 F-measure by
4000 cascades. Thus, we observe that in spite of the same scale
of this dataset to the synthetic ones, we need more number of
measurements to reach a high F-measure value.

The reason behind better results for F-measure in higher
number of cascades that can be presented in several aspects.
First, with more cascades we traverse more edges of the graph.
Meanwhile, the transmission probability over an edge gets
repeated in more equations of the linear system. Thus, the
effect of that edge on the increase of cascade probabilitiescan
be seen more and the predicted value for the corresponding
element in the vectorized adjacency matrix will get a higher
value (i.e. passes the considered prediction threshold). Fur-
thermore, in CS theory, higher number of measurements (i.e.
rows of the matrixA) most probably results in better recovery
which can be observed in this result.

E. The effect of the sparsity of the network adjacency:

According to the CS theory, the less sparsity in the unknown
vector, the less accuracy in its recovery. To show this phe-
nomenon in our framework, we consider several ER networks
with 100 vertices and number of edges ranging from 500 to
5000. In other words, the sparsity ranges from 0.5 to 0.95.
Again we consider all the F-measures to evaluate the results.

As expected, in Figure 7, we observe that the more sparsity
in the same scale (i.e. number of vertices) yields to the better
performance of our approach. In 0.95 sparsity, we have a
near perfect reconstruction. However, decreasing the sparsity
to 0.9, diminishes the F-measure to below 0.8. Thus, in the
same dataset, the network reconstruction with more sparsity
can result in higher accuracy.

The sparsity can not be compared in different datasets. To
see this, we can consider the results for C.elegans and US
Top 500 in Figure 6(a) again. Both datasets have above 0.97
sparsity in their vectorized adjacency matrix. But due to the
larger scale of US Top 500, and the more cascades needed for
the better reconstruction, the F-measure related to C.elegans
is relatively higher than US Top 500 with the same number
of cascades.
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(a) BA Network (b) ER Network

(c) Small World Network (d) Core-periphery Kronecker

(e) Football network (f) C.elegans network (g) US Top 500 network

Fig. 8. Performance comparison of CS-NetRec with NetInf, considering different values ofβ parameter (i.e. cascade lengths) andα = 1. (a,b,c,d) Sythetic
networks (e,f,g) Real networks. We considered 2500 cascades for BA, ER, SmallWorld and Football datasets, 8000 cascades for Kronecker graph and 10000
cascades for C.elegans and US Top 500. The numbers in the parantheses show the number of edges recovered.

F. Performance comparison with NetInf:

As we present our proposed framework in the context of
information networks, we compared the performance of our
method with NetInf; one of the state-of-the-art methods for
inferring networks of diffusion [5].

We consider different values for the parameterβ as we
would like to evaluate the performance of methods in presence
of more local information (i.e. shorter cascades) and more
global information (i.e. longer cascades). We also setα to 1
in our tests. Given a fixed number of cascades, we ran NetInf
with the number of iterations same as the number of edges that
our method can reconstruct. The results can be seen in Figure
8. It can be observed that in all test cases, the resulted F-
measure in our method is higher than or equal to NetInf and
as we increase the value ofβ, the difference in F-measure
becomes more. In Small world, ER, and Football datasets,
the difference is more clear. Inβ = 0.9 the improvement

by our method in F-measure is about 0.5, 0.25 and 0.18 for
Small world, ER and Football datasets respectively. Overall,
for different cascade lengths, our method outperforms NetInf
by an average 9-10% improvement in terms of F-measure.

VI. CONCLUSION

In this paper, we studied the problem of network reconstruc-
tion and introduced a general framework based on which any
type of the observations on an external process on the network
can be utilized to reconstruct the network of interest. As a
special case, we considered the diffusion of the information
cascades as an external process on the underlying network. By
utilizing the probabilistic measures of information cascades,
we formulated the problem of network reconstruction as a
linear system in the context of compressive sensing. Since
most of the time, this linear system is under-determined,
we used the theory of compressive sensing as a tool to
reconstruct the network of interest. By numerical experiments,
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we demonstrated that this framework will converge to accurate
solutions. In addition, the results suggest that in the context
of information networks, our method can perform even better
than the state-of-the-art method, NetInf.

Several directions can be pursued for the future work. Here
we used the adjacency matrix as the unknown vector and thus
it is interesting to look for ways to reduce the dimensionality
of the linear system. Also it would be interesting to use other
external processes and utilize other features for the network
nodes to reconstruct the network of interest using the proposed
framework.
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